If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15-19a^2=-1885
We move all terms to the left:
15-19a^2-(-1885)=0
We add all the numbers together, and all the variables
-19a^2+1900=0
a = -19; b = 0; c = +1900;
Δ = b2-4ac
Δ = 02-4·(-19)·1900
Δ = 144400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{144400}=380$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-380}{2*-19}=\frac{-380}{-38} =+10 $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+380}{2*-19}=\frac{380}{-38} =-10 $
| 3.2a=19.2 | | g=8+10 | | 2x+317x-24=180 | | 2.5k+7=17 | | 2x7=4x-3 | | 15-9a^2=-1885 | | -5w+9-6w+12=43 | | (x-10)/(9)=7 | | -15x-10=-5x+40 | | w=6+4 | | 20g−17g=9 | | (5/6)*(3/8-x)=16 | | 56=3x+11 | | 11x+25x+9=90 | | 1/2y-8=-20 | | 5=2t-7 | | r+2/3=5/6 | | B=2x+31+E=7x-24=180 | | 2x+3(x-1)=7x+1-2(x=2)= | | H(t)=-6t^2+48t | | Q(6,-4)x=2 | | –2(v–5)=–14 | | 11x+25+9=90 | | p-4.6=17 | | 4u+18-6u=22 | | 9x+1=−62 | | 3v=219 | | 3+2+4x=7+4x | | F(10)=4x-6 | | (3x-1)(x-3)-(4-5x)(3x-4)=6(x-7)-(3x+5)^2 | | 5x^2-56=80 | | −30+4y=−14 |